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The analysis of wave propagation in periodic elastic structures,

i.e., structures in which the elastic constants of the material vary

in a periodic manner, is of great interest due to the presence of passing

and stopping frequency bands in such structures. While such an analysis
is in general quite complicated, closed form solutions have recently

been obtained for a number of simpler problems. It is the purpose of this
note to discuss an alternative approach to such problems which may be of
some value in gaining physical insight into the properties of the solu-
tion and in qualitatively "sketching" the frequency spectrum with reduced
effort.

One common physical case studied so far is that of torsiomal
elastic wave propagation in a bi-element composite circular cylinder,
either solid, reference [1l], or hollow, reference [2]. The outer (and
inner, if present) boundaries are taken as stress free. The prismatic
cylinder is assumed to be infinite in length, lzl < o, and consists of
two homogeneous elements, comprising region I of length %, density p
and shear modulus p and region II of length &', density p' and shear
modulus u', repeated periodically in the axial (z) direction with a unit
cell sized = (2 + 2&'). Such a problem has only a single displacement com-

ponent, U independent of the 6 coordinate in a cylindrical coordinate

e’
system (r,6,z). This displacement component satisfies a wave equation

1/2 and c' = (u'/p')ll2 in regions I and II

with phase speed c = (u/p)
respectively. We choose the z coordinate positive to the right and assume
a time harmonic dependence proportional to exp(-iwt), where w is the ang-
ular frequency in radians per unit of time.

In this simple example, the governing field equation readily separates

in (r,z) to give tangential component of displacement in the form:




"

(1) (a) Region I, 0 <z < &
Ug = [A sin (\z/%) + B cos (Az/2)] 2l(xr/a) exp(-iut),

(b) Region II, - &' < z < 0:

u? = [A' sin (A'z/8') + B cos (\'z/2")] 2" (c'r/a) exp(~iut).

We take the outer radius of the cylinder to be a, the inner radius
(if one exists) b, the half thickness h = (a-b)/2 and Q = w/ws where
o = nc/2h is the lowest thickness shear frequency oé an infinite, iso-
tropic, homogeneous plate of half thickness, h, mass density, p, and shear
modulus, u. We have condensed the notation (which corresponds to [1]
and [2]) by introducing k = wka/2h, ' = wk'a/2h, X = 7£2/2h, A' = nE'L'/2h.

The radial solutions, Z, are given by

) 2l = 2/¢) 3] (xx/a) 250
= (2/x) Il(xr/a) k2 <0
=r/a K2 =0

for the solid cylinder and

(3) ZI = (2/x) Jl(Kr/a) - (m/2) DYl(Kr/a) KZ 20
= (2/x) 1,(xr/a) + k D K (xr/a) 2 <0
= r/a + Da/r xz =0

for the hollow cylinder with similar equations for ZII in terms of «x'

and D' and where




%) (Enla)z + Az = (lw/c)2 or k” + 52 = Q°,

@e'/a)l + 202 = @wfe)? or k2 4+ ' e (e/c) 2Rl

The radial boundary conditions require‘zero shear stress, Ep ™
ur&[Uelr]/ar,én the outer surface r=a and either zero shear stress on
the inner surface r=b for the hollow cylinder or a bounded displacement
at the origin 0+ for the solid cylinder (this was already implied in
the form of Z used above for the solid cylinder).

For the solid cylinder, the radial boundary condition requires

(5) JZ(K) =0,

for nz > 0 and has no roots for K2 < 0. Roots of this transcendental

equation as given in [3] are Ko = 0, L e 5.1356, K, = 8.4172, SRLLS,

etc. LS

For the hollow cylinder, the boundary conditions require

(6) JZ(K) Yz(xt) - Jz(nt) YZ(K) =0, t=0b/a

D

n

2 14) 1, ()13, 0) |

for Kz > 0 and no solution for xz < 0. Roots of this transcendental

equation must be calculated as a function of t. For t = 1/3, Ky =

1.1892, «, = 2,1160, x, = 3.0811, etc., and for t = 1/2, k. = 1.08446,

2
= 2.04602, «

3 1

3" 3.03122, etc. Similar results hold for «'.

The remaining boundary conditions apply to surfaces of constant z.

The origin and direction of the z axis are arbitrary; we choose z=0

*2

at the interface between regions II and I and first require continuity of

15 and T ™ uaug/az. This leads to the two conditions




(7) VA = v'A', B=B',

where

V= ur/2 and V' = p"a'/e.

The remaining interfacial condition is a quasi-periodicity condition
which, by Floquet's theorem, requires the wave amplitude to have the same
periodic structure as that of the elastic medium, in order to have

a solution
Ua(r.z.t) = w(r,z) exp 1 (yz - wt),

where w is periodic in z with periodicity d, i.e., w(r,z+d) = w(r,z)
and y is the Floquet's wave number corresponding to the phase shift,
which has to be determined from the solution of the problem.

This leads to the quasi-periodic conditions

11
(a) U: (r,2,t) = Ue (r,-2',t) exp iyd,

18)
(b) r:e (r,2,t) = Tig (r,-2',t) exp iyd,

where for convenience we have dropped explicit time harmonic dependence

ZII(K'r/a), fo8:, * & ¢'s

exp(-iwt). Equation (8) implies ZI(Kr/a)

and

(a) Asin A + Bcos A = [-A' sin A' + B' cos A'] exp iyd,
9
(b) v[A cos A - B sin A] = v'[A' cos A' + B' sin A'] exp iyd.
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While the problem is completely formulated at this point and has
indeed been solved in this form in references [1] and [2], we, however,
introduce slight modification in the variables of the problem.

We introduce the "interfacial elastic parameter", Q, as the ratio
of stress to displacement at an interface. Clearly Q is piecewise

continuous throughout the rod. Consider first le_o = Qo defined as
= = = y'A'/B'
Q10) Q, = T, (0)/U,(0) = vA/B = v'A'/B'.
Equations (9a) and (9b) may then be rewritten as
(a) B(Q° sin A + v cos A) = B'(v/v') [-Qo sin A' + v' cos 1A'] exp(iyd),
(11)

(b) B(Qo cos A - v sin vy ) -B'[Qo cos A' + v' sin A'] exp(iyd).

Consistency of these two homogeneous equations requires that the deter-
minant of the coefficients be zero. This leads us to the frequency

equation
2 ' ' 12 2 '
Q° {(v! sin X cos X' + v sin L' cos )] + Qo(v - v7) sin A sin A

(12) + vw' (v' sin A' cos A + Vv sin A cos A') =0, O SR =,

On the other hand, we mayeliminaneqo from Eq. (11) by using Eq. (10)

and then obtain the usual dispersion equation.

(13)

[exp(iyd)]2 + [(v/v' 5 v'/v) sin A sin A' =2 cos A cos \'] exp(iyd) + 1 = 0,




b=

which relates Floquet wave number y to the axial wave numbers A and A'.
Clearly, the second order equation has two solutions whose product is

unity and whose sum is
1
Q14) cos Yyd = cos A cos A' = 1-621-+ Y ) sin A sin A",
2 N Y

If we examine the completely homogeneous case, & = &', u = ﬁ',
p=p'y, £=¢'" and v = v', we get the solutions y = *(r/d)(£2/h + 2n),
n=0,1,2,.... On the extended zone scheme we select n = 0, and therefore
the two values for y = + 7£/2h = + \/% are real and simply represent
the two directions in which torsional waves can propagate with no change
in amplitude. This is best seen by examining the form of the z dependence

in the tangential component of displacement
Ue = B[(A/B) sin(Az/%) + cos(Az/2)] Z(xr/a),
where, from equation (10) it can easily be shown that
A/B = Q /v = *i.
Hence, as expected

UO = B[cos(Az/2) * 1 sin(Az/&)] Z(xr/a),

= B exp(+irz/L) Z(xr/a),

and represents the two directions in which the torsional wave can propagate

\

without change of form.
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While there may be no general advantage in calculating Qo for a given
Q and then calculating y etc., there are some special circumstances where
the introduction of Q_o is useful. Consider first the limiting cases when
Qo tends to 0 or =, corresponding to zero stress or zero displacement,
respectively, at z=0. The former, Qo=° leads to (if cos A and cos A'

are non-zero)
(a) vtan A +v' tan A'=0, v,v'#0

(b) cos yd = %-(cos A'/cos A + cos A/cos A'),

(15)

(c) U: = B cos (Az/&) Z(xr/a),

(d) UgI = B cos (A'z/%') Z(kr/a).

Similarly, for Q° = o, we have (if sin A and sin A' are non-zero)
(a) vcot A +v'cot A'"=0,v,v'#£0

(b) cos yd = %-(cos A'/cos A + cos A/cos A'),
(16)
(c) Up = A sin (Az/8) z(xr/a),

I

(d) ueI = AQ/v') sin(A'z/%') Z(xr/a).

These frequency equations for Qo = 0 and », are not only simpler to solve
than the general set, they are formally of the same structure as the
frequency equations for the endpoints of the Brillouin zones which define

the passing and stopping bands. Equations at the zone ends are obtained
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by setting exp(iyd) = * 1 in equation (13); these are the cut-off points
where Yy changes from real to imaginary values. For exp(iyd) = + 1,

this has solutions with a period d at frequencies defined by

(a) Vv tan(A/2) + v' tan(2'/2) = 0,

17)
(b) Vv tan{A'/2) + v' tan(2/2) = 0,

and for exp(iyd) = -1, it has solutions of period 2d at frequencies

defined by
(a) v tan(A/2) - v' cot(A'/2) = 0,
‘b) v cot(r/2) - v' tan(r'/2) = 0.

We thus see that the wave numbers satisfying equation (15(a)) are
one-half that satisfying equation (17(a)); that for equation (16(a)) are
one-half the wave numbers satisfying equation (17(b)).
It may be pointed out that Qo satisfies a quadratic equation, and
for a fixed « and given values of (R,y), there are always two values of Qo'

Thus

(2)

as) o =0 qf

=v tan A = -v' tan 1A',
0

are the two roots of Eq. (12) in the presence of the constraining equa-

tion (15a). The displacement field in the second case is

U: = A c8c A cos A(z/L - 1) Z(K;/a),

(19a)

U:I = =A' csc A' cos A'(z/2' + 1) Z(kr/a).




Similarly

Q) .
(18b) s SR ) TR i

are the two roots of the same equation in the presence of the constraining

equation (16a). The displacement field in the second case is

U: = A sec X sin A(z/2 - 1) Z(xr/a),

(19)
I1

Ue = A' sec ' sin A'(z/2' + 1) Z(kr/a). i
In each of these four cases the Floquet number y is governed by the same
equation (15a).
These ''second' solutions correspond to the same problem with the z
origin shifted by one segment, e.g. by 2. For example, the solution for
Qo(l) = (0 corresponds to a zero shear stress at z equal to zero while the

"second" solution, QO(Z) = v tan A, corresponds to a zero shear stress

at z = L, etc.
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The equation (15b = 16b) can be rewritten as

sin(yd/2) = ¢ %’((cos A/cos A')1/2 - (cos A'/cos A)l/z),
(20)

cos(yd/2) = + %‘((cos X/cos A')l/z + (cos A'/cos A)I/Z),

and therefore we see that at the end points of the Brillouin zones

cos \' -~ cos A =0 when yd = 0, 2m, 4w, ...
(21)

cos A' + cos A =0 when yd = v, 37, 57, ...
Thus on the left end of the zone
(22a) A' =2 ¢ NgTs TR Oy 2545 o
and on the right end of the zone
(22b) A' =2t ks R Zs 35 O ive

Consider now the case when Qo = 0. On the left end of the zone

cos ' = cos A imply sin A' = sin A and therefore from Eq. (15a)
(23) (v +v') tan A = 0,

Consequently, either (v + v') = 0, or sin A = 0. Hence, either
(24) A= 1nne/[(p/J)(£)£) +1l], or A =mr, m=20, 1, 2, ...

Knowing A from this equation, we can now find A' from Eq. (22a). However,

in the second case, n, in Eq. (22a) and m in Eq. (24)2. cannot both be




arbitrary since from Eq. (4)
(25) 22 o anlela)? 32 + w'1e)? 2 (ele? - 1),
When Q_ = =, we find from Eqs. (21); and (16a) that

v + v cot A = 0,

and therefore, either (v + v') = 0, or cos A = 0. Hence, in this case

either
(26) X = iﬂne/[(u/;)(z'll) BT i e e B B s

On the right end of the zone, we have simply to replace the integers n,

by n, to obtain corresponding formulas for A and A' when Qo = 0 or

It is easy to see that in the interior of the Brillouin zone 0 < yd < m,
yd is always complex for real values of X and X', A # A\'. This follows

immediately from the fact that Eq. (15b) can be rewritten as
(27) exp iyd = cos A/cos A'.

We therefore conclude that when Qo = 0 (stress-free interface), or when
Qo = o (displacement-free interface) torsional waves cannot be propagated
in a prismatic cylinder with periodic structure and are therefore damped
out.

We now consider those values of Qo whirh lead to information concern-
ing frequencies in the passing band. From Eq. (12) we find that when

= 4 '
Qo +iv




e

=12~
v (y2 2 '
(28) v - v'") sin A exp (#¥i)') = 0,

and when Q° = $iv

o

(29) v(v2 - v'2) sin A' exp (*i)) =

We assume that v # J, v #0and v' # 0. Then for Q° = +iv, sin A = 0

and in accordance with Eq. (14) cos yd = *cos A'. Therefore

A =nm, N =LQ el 2 e

(30)
yd=A'*mr, m=0,1, 2, ...

It therefore follows from Eq. (4) that

a® = % + (2nh/2)?
(31)

Cele’Y 0" = & & (Ih/RaD) Cd = i)

For every value of radial wave number k, these two equations determine a
unique value of Q@ and y.. Plotting Q versus yd, the first equation gives us
lines of constant @ for every given k and for.different values of n.
The second equation gives us a series of hyperbolas (or straight lines when
k.o = 0). Starting with the cut-off frequencies when yd = 0, the real
branches of the dispersion curves lie between the bounds defined by
Eq. (31). The dispersion curve will cross the bcunds only at their points
of intersection, where Qo =t {v',

Another independent set of bounds can similarly be found when

Q_o = + iv, leading to sin A' = 0. 1In this case the two equations of the

bounds are




w12

(c/c')zﬂ2 -k + (2nh/2")2,
0% = k% + @2n/ne)2(yd + am)2.

Since the cut-off frequencies at Yy = 0 and yd = 7 are available from
the roots of Eqs. (17, 18), the knowledge of additional intersection points
inside the Brillouin zone, provides us with sufficient information to
sketch the dispersion curve qualitatively. The use of interfacial parameter
Q0 therefore provides us with a scheme for a qualitative solution, which
may be valuable in more complex problems.

Physically, these two cases correspond to A' = iB' and A = iB
respectively. These conditions in turn lead to the requirement that the
ratio of shear stress, rze(z), to displacement, Ue(z), be uniform
throughout region II for Qo = iv and throughout region I for Qo = iv',

II II K
i.e., T,0 (z)/Ue (z) = TzeII(O)/UeI(O) respectively.

The bounding curves for Qo = iv, and iv', are shown in Fig. 1 along
with the actual dispersion curve as calculated in ref. [1] for the lowest
branch, R - 0,for a solid cylinder. The parameters used are p/u' = 1/40,
2/a = 3/5, 2'/a = 3, c¢/c' = 1/4. For these parameters, the bounding

curves for Qo = 1iv' are Q@ = 5n/3; -zi = -2—9 + n and for Qo = iv are

- L
Q= 4n/3; . 5 Q + n.
The scale for ? in reference [1] is different from that used in
this paper by a factor of 2 since w there was nondimensionalized with

respect to the lowest thickness shear mode frequency of an infinite plate

of half width a while here a half width h, equal to a/2 for a solid




cylinder, is used. Thus values from reference [1] used for comparison

here must be divided by 2. Thus, the cut off frequencies

are at @ = 0, 0.290, 1.168, 1.359, 1.628, 1.872, 2.620, 2.772, etc.

The intersection points of the bounding curves lie for Qo = {iv at (1.8,

1.33) for n =1, m =1 and at (3.6, 2.67) for n = 2, m = 2 while for

Qo = iv', the first point lies at (2.25, 1.67) for n = 1, m = 1 and the

others lie beyond the range of calculated values. The complex roots

lie at (1 + 0,177i, 0.764) and (1 + 0.729i, 0.679) for Qo =0, »

respectively on the first complex branch, at (2 + 0.055i, 1.361) and

(2 + 0.0804, 1.1624) for Qo = 0, » respectively on the second branch, etc.
The effort in calculating all of these bounds and solution points

and the end points of the Brillouin zones is considerably less than that

involved in determining the complete dispersion spectrum, even for this

simple problem, yet these few calculations are sufficient for a reasonably

accurate sketch. It is anticipated that this reduction in effort will

apply to more general problems as well.

——
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